If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-12=-3a
We move all terms to the left:
a^2-12-(-3a)=0
We get rid of parentheses
a^2+3a-12=0
a = 1; b = 3; c = -12;
Δ = b2-4ac
Δ = 32-4·1·(-12)
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{57}}{2*1}=\frac{-3-\sqrt{57}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{57}}{2*1}=\frac{-3+\sqrt{57}}{2} $
| (11x-5)+83=180 | | 6.1=-4x+6.1 | | 180=90+(2x-2) | | -4.5=1.5x-6 | | -6=1.5x-6 | | -9−2z=z | | 4(2)+y=18 | | x+(x-26)+90=180 | | 2x^2+38x-432=0 | | 5u+7-3(-5u-1)=u-1 | | (4x-11)=(x+46) | | -12d+39=-4d-17 | | 1/5n+4/3n=2 | | -6=-1.5x-3 | | 0=x+-10(1.5) | | 180=(4x-11)+(x+46) | | 16b+-16b−-13b=13 | | 0.44x=1 | | 153-w=293 | | 2x+8+3x-10=180 | | 4x4=64 | | 3=p=9p | | 3x-10+x+50=180 | | 11d-4d=14 | | (x+12)+112=180 | | -2(-4w+1)=3(w-6)-2 | | 90=-9(r-4) | | |5x+7|−7=19 | | 5-3n=-100 | | 3/4=2/k-4 | | -5(3y-7)+7y=6(y+7) | | 20x/6+10x/3=10/3 |